Blaarmeersen

Sign in to test your solution.
# Je dient eerst onderstaande biliotheken te installeren via # > install.packages(c("rvest", "polite")) # dit is slechts één keer nodig # De bibliotheken inladen doe je via: # > library(rvest, polite) cols <- c("datum", "kwaliteit", "enterococcus", "e_coli", "temp") data <- data.frame(matrix(nrow = 0, ncol = length(cols))) # Data uit een aantal pagina's extraheren for (i in 0:20){ url <- paste0("https://kwaliteitzwemwater.be/nl/blaarmeersen/blaarmeersen-z", "wemsportzone-gent?page=", i) result <- as.data.frame( polite::bow(url) %>% polite::scrape(content="text/html; charset=UTF-8") %>% rvest::html_nodes(".views-table") %>% rvest::html_table()) data <- rbind(data, result[, !(names(result) %in% c("Cyanobacteriën"))]) } colnames(data) <- cols data$temp <- as.numeric(sub(",", ".", data$temp, fixed = TRUE)) data$datum <- as.Date(data$datum, "%d-%m-%Y") # Geef hieronder een antwoord op het gevraagde:
You can submit as many times as you like. Only your latest submission will be taken into account.
Sign in to test your solution.

  Python sandbox

This window allows you to run Python code without installing a thing. The code you write here is not automatically submitted to Dodona. This feature is still in full development, so we're happy to hear about your suggestions and issues using the contact form.