TIME 2 CODE Python Programming guide

#

text

Examples:
This is a comment
Hash symbol: A comment.

Comments are ignored by the computer and discarded when a
program is translated into machine code. They are used by
programmers to explain the purpose of sections of code. This is
helpful when you return to a program after a period of time, or when

you work in teams.
Comments are typically used:

e At the beginning of a program to explain its purpose.

e Before each subprogram: def

e Before each selection statement: if, else, match, case.

e Before each iteration: for, while.

e To explain difficult to comprehend code.

e Toremind the author why unusual approaches have been

taken.

Associated keywords: def, if, else, match, case, while

Levels 1-10 1

TIME 2 CODE Python Programming guide

ABS

variable = abs(parameter)

Examples:
x = abs(-5)
x = abs(y)

Function: Returns an absolute value of the parameter.

The absolute value is a positive value. For example, the absolute value
of -6 is 6. This function is useful for turning a negative number into a

positive number.

It can also be useful to swap a number from positive to negative or
negative to positive. This can be achieved with x = -X.

Levels 1-10 2

TIME 2 CODE Python Programming guide

APPEND

list.append(parameter)
Examples:
mylist.append("Dave")

Method: Adds the parameter to a list.

The example above adds the string "Dave" to the list called mylist. The
parameter can be a value, a variable or a list. Append means to add to
the end, so the new item is always added to the end of the list and
becomes the last item.

You can overwrite existing elements of a list by referring to their
index. E.g. 1ist[2] = "Dave" will replace what is currently stored

in index 2.

Associated keywords: insert, pop, remove

Levels 1-10 3

TIME 2 CODE Python Programming guide

CHR

variable = chr(integer)
Examples:
character = chr(65)

Function: Returns the character from a denary ASCII code.

All characters, including letters, numbers and symbols stored in strings
are actually stored in binary by the computer. The American Standard
Code for Information Interchange (ASCII) is one standard for encoding
characters in binary. To make it easier for humans these binary codes

can also be output in denary.

For example:

65 - |IA|I
66 - |IB||
67 ="C" etc.

Note that uppercase and lowercase letters have different codes.

Associated keywords: ord

Levels 1-10 4

TIME 2 CODE Python Programming guide

CLOSE

pipe.close()

Examples:
my file.close()
Method: Closes the file pointed to by the pipe.

It is considered good practice to close a file as soon as possible before
further processing takes place. Not only does this release the file for
other code that may require the file, but it can in rare cases prevent

the file becoming corrupted.

Associated keywords: open, read, readline, write

Levels 1-10 5

TIME 2 CODE Python Programming guide

COPY

newlist = list.copy()
Examples:
mylist = oldlist.copy()

Method: Copies all the items in one list into another.

Note you cannot use mylist = oldlist with lists as you would
with variables because mylist will become a pointer to oldlist in
memory. This means you will still be updating the same list if you
don’t use the copy method.

Levels 1-10 6

TIME 2 CODE Python Programming guide

DEF

def identifier(parameters):

Examples:

def square(x):
X =x *x
return Xx

Command: Defines a new subprogram. Subprograms are also called

subroutines.

Code must be indented inside the subprogram. You cannot use spaces
in the identifier name of the subprogram. It is common to use
underscores to separate words in the name of the subprogram

instead.
Don't forget the colon at the end of this command.

Subprograms can be procedures that do not return a value or
functions that do return a value. Procedures are used to structure a
program into smaller more manageable parts. This is known as
problem decomposition. Functions are used to create reusable
program components. Subprograms avoid unnecessary code
duplication and make the code easier to read which also makes
finding errors in code, called debugging easier.

Associated keywords: return

Levels 1-10 7

TIME 2 CODE Python Programming guide

FIND

variable = string.find(string)

Examples:
i = "Hello World".find("W")

Method: Returns the index of where a string can be found inside

another string.

In the example above, i is assigned to be 6, the index of the character
"W" in the string, "Hello World". Like items in a list, each character of
a string has an index. Strings are zero-indexed which means the first
character is stored at index 0. Remember that a space is also a

character.

The method only returns the first occurrence of the search string. If

the string cannot be found -1 is returned.

If you want to find more than one occurrence in the string, you should
consider using a search algorithm instead. For example, a linear
search can use a for loop to iterate over all the characters in a string.

Associated keywords: replace

Levels 1-10 8

TIME 2 CODE Python Programming guide

FLOAT

variable = float(parameter)

Examples:

x = float("5")
x = float(6)

x = float(y)

Function: Casts a parameter to a floating point number.

Different types of data are stored in different ways by the computer.
Inputs taken from the keyboard are always sequences of
alphanumeric characters called strings. These sequences of characters
are stored as numbers by the computer using a standard such as ASCI/
or Unicode. The input string "5.6" (strings are qualified by quotes) is
stored as the numbers 53, 46, 54. To do calculations on the input, it
first needs to be converted from a string to a number, or from 53, 46,
54 t0 5.6. This is known as casting.

Whole numbers with no fractional part are known as integers.
Numbers with a fractional part (decimal places) are known as floating

points, floats, real numbers or reals.
A run-time error will occur if the parameter cannot be cast to a float.

Associated keywords: int, str

Levels 1-10 9

TIME 2 CODE Python Programming guide

FOR

for variable in sequence:
indented code

Examples:

for counter in range(5):
print(counter)

for counter in range(5, 0, -1):
print(counter)

for item in mylist:
print(item)

Command: Repeats the indented section of code a given number of
times.

The sequence can be a set of numbers defined by the range command

or the elements of a list.

Code to be executed must be indented. This is often the source of
many logic errors, so check your code is indented correctly.

Repeated sections of code are known as iterations or loops. Use a for
command when you want to repeat a known number of times, for
example to iterate over all the items in a list.

It is good practice to comment before this command to explain the

purpose of the iteration.

Levels 1-10 10

TIME 2 CODE Python Programming guide

It is possible to include another for command within an indented
section. This is known as nesting.

Although the functionality of a for command can be replicated with a
while command it is usually considered good practice to use a for loop
for finite iterations.

As a for command will always iterate a finite number of times, to
maximise the efficiency of an algorithm you should consider if a while
loop or an alternative command could be used instead to terminate
the iteration early. For example, if you need to find or consider all the
items in a list then a for command is ideal. If you only need to find the
first occurrence consider using the index method instead.

It is possible to terminate a for loop before it is complete with a break
command, but this is not considered good practice because it creates
more than one exit point for the command which increases the
complexity of testing. The use of break should usually be avoided.

Associated keywords: #, range, in, while

Levels 1-10 11

TIME 2 CODE Python Programming guide

FORMAT

"string {parameter index: format}".format(parameters)

Examples:
name = "Dave"
age = 18

print("Hello {©}. You are {1} years
old.".format(name, age))

value = 4.56754
print("{0:.2f}".format(3.56756))
Method: Formats a string for output.

As an alternative to concatenation, string formatting provides more
options to manipulate variables used in the output.

The parameters are the values to be used, separated with a comma.
Each parameter is referred to by an index within the string. E.g.

"{0} £{1}".format(a, b)

{0} is the first parameter a, {1} is the second parameter, b. The indexes

are replaced with the parameters in the string output.
label = "Price"

price = 2.99

print("{e} £{1}".format(label, price))

Levels 1-10 12

TIME 2 CODE Python Programming guide

Would result in the output:
Price £2.99

String formatting is often used to output a number to a number of
decimal places. For example. 2.99183 to two decimal places is 2.99.

This is achieved with the format . 2f

E.g.

price = 2.99183

print("Price: £{0:.2f}".format(price))

Note that this does not perform any rounding, it truncates the output
to two decimal places.

Associated keywords: print

Levels 1-10 13

TIME 2 CODE Python Programming guide

IF

If condition:
indented code
elif condition:
indented code
else:
indented code
Examples:
If x == y:
print("The value of x is the same as y")
elif x < y:
print("The value of x is less than y")
else:

print("The value of x is greater than y")

Command: Selects which code branch to execute next depending on
the outcome of a condition.

The condition requires two variables or constants to be compared
with mathematical or logic operators (see appendix 1). More than one
condition can be combined with logic operators and brackets can be
used to group conditions.

Levels 1-10 14

TIME 2 CODE Python Programming guide

E.g.
if ((x >y) and (x > 6)):

Note that you should not use if x > y > 6 asit will not work as
you expect. Instead, be explicit about which two items of data are
being compared in each condition.

The result of an if command is always either True or False.

That means you can also use a shorthand for Boolean conditions. E.g.
if valid: isthesameas if valid == True:

if not valid: isthesameasif valid == False:

The elif section is an optional part of the command to include
alternative conditions. You can include as many additional elif sections
as you need but consider using the command match instead if you

require more than one elif section.

The else section is an optional part to execute if none of the
conditions are met, including those in elif sections.

Code to be executed for each section must be indented. This is often
the source of many logic errors, so check your code is indented
correctly.

It is good practice to comment each section of this command to

explain the purpose of each condition.

It is possible to include another if command within an indented
section. This is known as nesting.

Associated keywords: #, match, in

Levels 1-10 15

TIME 2 CODE Python Programming guide

IMPORT

import library

Examples:

import random

import math, os, time, turtle

Command: Includes additional commands in your program.

Python includes a basic set of commands, but these can be extended
by including additional functions provided in libraries.

For example, functions associated with random number generation
are included in a library called random. Functions associated with
more advanced mathematics are included in the math library. File and
folder manipulation in the os library and turtle graphics in the
turtle library. These are just a few of the common libraries, but
there are many more.

Libraries speed up programming by using code that has been created
by other people with expertise and should already be error free.

Any additional commands that your program requires will need to be
translated into machine code by the computer when your program
runs, so to reduce memory requirements and redundant code
programmers only import the libraries that their program needs.

It is possible to create your own library of functions.

Levels 1-10 16

TIME 2 CODE Python Programming guide

IN

variable in list

Examples:

if "Dave" in ["Craig", "Dave"]
if x iny

while x in y

Command: Returns whether a constant or a variable is contained

within a list.

The in command is very useful for checking if an item exists within a
list and negates the need for a searching algorithm. It can be used as a
condition for selection and iteration commands.

Returns True if the variable is in the list or False if not.

Associated keywords: if, while

Levels 1-10 17

TIME 2 CODE Python Programming guide

INDEX

variable = list.index(parameter)

Examples:
i = mylist.index("C")

Method: Returns the index of where the parameter can be found in a
list.

For example, if a list contained: ["A", "B", "C", "D"] then
mylist.index("C") would return 2 because the item "C" is stored
atindex 2. Remember that lists are zero-indexed which means the
first item is stored at index 0. The method only returns the first

occurrence of an item in a list.

If the item is not in the list a run-time error will occur so you should
only use this method after the condition: if parameter in
mylistis True.

If you want to find more than one occurrence in the list, you should
consider using a search algorithm instead. For example, a linear
search can use a for loop to iterate over all the items in a list.

Associated keywords: find

Levels 1-10 18

TIME 2 CODE Python Programming guide

INPUT

variable = input(parameter)

Examples:

surname = input("Enter your surname: ")
prompt = "Enter your forename: "
forename = input(prompt)

Function: returns an input from the keyboard.

Inputs from the keyboard allow user interaction with your program.

Inputs are always sequences of alphanumeric characters called strings

terminated when the user presses the enter key.

The parameter prompt to the user is optional but informs the user

what data they are expected to enter.

It is common to add an extra space at the end of the prompt to
separate the prompt and the input.

Remember to do calculations on the input, the input data will need to

be cast to an integer or float.

Levels 1-10

19

TIME 2 CODE Python Programming guide

INSERT

list.insert(index, parameter)

Examples:
mylist.insert(2, "Dave")
Method: Inserts the parameter into a list.

The example above inserts the string "Dave" into the list called mylist
atindex 2. The indexes of the existing items at index 2 and above are

incremented. The parameter can be a value, a variable or a list.

You can overwrite existing elements of a list by referring to their
index. E.g. 1ist[2] = "Dave" will replace what is currently stored

in index 2.

Associated keywords: append, pop, remove

Levels 1-10 20

TIME 2 CODE Python Programming guide

INT

variable = intf(parameter)

Examples:

x = int("5")
X = int(6.5)
x = int(y)

Function: Casts a parameter to an integer.

Different types of data are stored in different ways by the computer.
Inputs taken from the keyboard are always sequences of
alphanumeric characters called strings. These sequences of characters
are stored as numbers by the computer using a standard such as ASCI/
or Unicode. The input string "5" (strings are qualified by quotes) is
stored as the number 53. To do calculations on the input, it first needs
to be converted from a string to a number, or from 53 to 5. This is

known as casting.

Whole numbers with no fractional part are known as integers.
Numbers with a fractional part (decimal places) are known as floating
points, floats, real numbers or reals. Using int to cast a float to an
integer also removes the fractional component.

A run-time error will occur if the parameter cannot be cast to an

integer.

Associated keywords: float, str

Levels 1-10 21

TIME 2 CODE Python Programming guide

ISALPHA

string.isalpha()
Examples:
if surname.isalpha():
print("The surname is valid")
else:
print("The surname is invalid")

Method: returns True if the string only contains the letters a to z or A
toZ

Can be useful for validation routines.

Associated keywords: isdigit, isalnum

Levels 1-10 22

TIME 2 CODE Python Programming guide

ISALNUM

string.isalnum()

Examples:
if password.isalnumn():
print("Password is not strong enough")

Method: returns True if the string only contains the letters a to z or A
to Z or the digits 0 to 9.

Can be useful for validation routines.

Associated keywords: isdigit, isalpha

Levels 1-10 23

TIME 2 CODE Python Programming guide

ISDIGIT

string.isdigit()
Examples:
if not month.isdigit():
print("The month is invalid")

Method: returns True if all the characters in the string are the digits 0
to 9. If this is the case the string can be cast to an integer or float.

Can be useful for validation routines.

Associated keywords: isalpha, isalnum, int, float

Levels 1-10 24

TIME 2 CODE Python Programming guide

ISLOWER

string.islower()

Examples:
if surname.islower():

Method: returns True if all the characters in the string are in

lowercase (small letters) or False if not.
Can be useful for validation routines.

Associated keywords: isupper, lower, upper

Levels 1-10

25

TIME 2 CODE Python Programming guide

ISUPPER

string.isupper()
Examples:
if surname.isupper():

Method: returns True if all the characters in the string are in

uppercase (capital letters) or False if not.
Can be useful for validation routines.

Associated keywords: islower, lower, upper

Levels 1-10

26

TIME 2 CODE Python Programming guide

JOIN

variable = string.join(list)
Examples:

mylist = ["Hello", "World"]

mystring = .join(mylist)

Method: Concatenates all items in a list into a single string variable
separated by a chosen string.

In the example above, mystring would be assigned, "Hello-World".
Each element of mylist has been joined together separated by a
hyphen.

Be careful when using escape characters as concatenators. For
example, mystring = "\".join(mylist) will generate a syntax
error.

Join can be useful for creating the output for a single record from
multiple fields for a CSV file, where each item is separated by a
comma.

Associated keywords: split

Levels 1-10 27

TIME 2 CODE Python Programming guide

LEN

variable = len(parameter)

Examples:
x = len("A", "B", "C")
x = len(mylist)

Function: Returns the number of indexes in the parameter.

Remember the number of indexes includes the first index which is

index O.

The parameter can be a string, in which case the number of characters
is returned, or a list in which case the number of elements is returned.

Levels 1-10 28

TIME 2 CODE Python Programming guide

LOWER

Variable = string.lower()

Examples:
email = myaddress.lower()
Method: returns the string in lowercase (small letters).

Associated keywords: islower, isupper, upper

Levels 1-10

29

TIME 2 CODE Python Programming guide

MATCH

match variable:
case value:
indented code
case _:
indented code
Examples:
match day_name:
case "Thu" | "Fri" | "Sat":
print("Open 10-5pm")
case "Sun":
print("Open 11-3pm")
case _
print("Closed.")

Command: An alternative to the if/elif/else structure that is used
when there are more than two outcomes. Match is considered a
better command to use because it is more readable for multiple
values. Don’t forget the colon after match and each case.

Possible values can be separated with pipe characters: | (this is the
equivalent to the logical OR operator). You can have as many case
statements as you need, and each one should include a comment.

Levels 1-10 30

TIME 2 CODE Python Programming guide

case _:istheequivalentto else and captures any value that was

not matched.

Note the match command is only supported in Python 3.10+

Associated keywords: #, if

Levels 1-10 31

TIME 2 CODE Python Programming guide

MATH.CEIL

variable = math.ceil(parameter)

Examples:
X = 65.23
x = math.ceil(x)

Function: Rounds a number up to the nearest integer.

In the example above x would be assigned 66 as 0.5 rounding is
ignored.

Associated keywords: import, math.floor, round

Levels 1-10

32

TIME 2 CODE Python Programming guide

MATH.FLOOR

variable = math.floor(parameter)

Examples:
X = 65.83
x = math.floor(x)

Function: Rounds a number down to the nearest integer.

In the example above x would be assigned 65 as 0.5 rounding is
ignored.

Associated keywords: import, math.ceil, round

Levels 1-10

33

TIME 2 CODE Python Programming guide

MATH.PI

variable = math.pi

Examples:
X = math.pi
Function: Returns the constant pi as 3.141592653589793.

Associated keywords: import

Levels 1-10

34

TIME 2 CODE Python Programming guide

MATH.SQRT

variable = math.sqri(parameter)

Examples:

x = math.sqrt(25)

X

math.sqrt(y)
Function: Returns the square root of a number.

Associated keywords: import

Levels 1-10

35

TIME 2 CODE Python Programming guide

OPEN

variable = open(filename, operation)

Examples:
my file = open("mydata.txt", "r")
Command: Opens a serial text file for reading or writing data.

The first parameter is a filename that data is to be read from or
written to. The filename can be a variable and also include a file path.
The default path is the same folder that the .py program is stored in.

The second parameter is the operation to perform on the file:
rt Read data from the file.
"w" Overwrite and existing data in the file.

"a" Append data to the end of the file.

Overwrite and append operations will create a file if one does not
already exist. A run-time error will occur if reading is attempted, and
the file does not exist.

The variable becomes what is known as a pipe or pointer to the file.
Files must always be opened before data can be read from or written
to the pipe.

Note a file can only be open for either reading or writing at any one
time. You cannot read and write to the same file at the same time.

Associated keywords: close, read, readline, write

Levels 1-10 36

TIME 2 CODE Python Programming guide

ORD

variable = ord(character)

Examples:
ascii_code = ord("A")
Function: Returns the ASCII code of a character.

All characters, including letters, numbers and symbols stored in strings
are actually stored in binary by the computer. The American Standard
Code for Information Interchange (ASCII) is one standard for encoding
characters in binary. To make it easier for humans these binary codes

can also be output in denary.

For example:

IIAH - 65
IIBII - 66
"C" =67 etc.

Note that uppercase and lowercase letters have different codes.

Associated keywords: chr

Levels 1-10 37

TIME 2 CODE Python Programming guide

POP

list.pop(index)

Examples:

mylist.remove(2)

Method: Removes an index from a list.

The example above removes the item stored at index 2 from the list
called mylist. Remember that this will reduce the index of all other

elements stored after the index by -1.

Associated keywords: append, insert, remove

Levels 1-10 38

TIME 2 CODE Python Programming guide

PRINT

printf(parameters)

Examples:
print("Hello World")
print(x)

Command: Outputs a value to the screen. The value can be any data
type: Boolean, integer, list, float, string.

Don’t forget that what you want to output must be enclosed in
brackets. Strings will need to be qualified by quotes.

Each print statement puts the output on a new line. You can prevent a

nmn

new line by concatenating end ="" to the output. E.g.
print("Hello", end = "")

print("World")

A single blank line, or the end of a line can be output with:

print()

Multiple parameters can be output on one line. Each parameter is
separated with a comma. The output will include an automatic space
between each parameter:

print("You are", age, "years old")

Associated keywords: format

Levels 1-10 39

TIME 2 CODE Python Programming guide

RANDOM.CHOICE

random.choice(list)

Examples:
letter = random.choice(["A", "B", "C"])

Function: Returns a random element from a list. This command must

be imported from the random library before use.

To generate random elements and not a deterministic sequence, this
command also requires random. seed () to be used once in the

program before random. choice.

Associated keywords: import, random.seed, random.shuffle

Levels 1-10 40

TIME 2 CODE Python Programming guide

RANDOM.RANDINT

random.randint(low_value, high_value)
Examples:
dice = random.randint(1, 6)

Function: Returns a random number between the low and high value
parameters inclusive. This command must be imported from the
random library before use.

To generate random numbers and not a deterministic sequence, this
command also requires random. seed() to be used once in the
program before random. randint.

Associated keywords: import, random.choice, random.seed,
random.shuffle

Levels 1-10 4]

TIME 2 CODE Python Programming guide

RANDOM.SEED

random.seed(value)

Examples:
random.seed()
random.seed(1)

Command: Sets the seed to be used by the random number function.
This command must be imported from the random library before use.

Computers cannot generate random numbers because they can only
perform calculations. Instead, they use a calculation on a number
known as a seed to generate what looks like a random number to the
user. For example, the fractional part of the square root of 55 is
4161984871. If you didn’t know the algorithm and the seed value of
55, these digits would appear to be random. Python uses an algorithm
known as Mersenne Twister to generate random numbers.

By not specifying a value for the seed, the random number function
will use the time of day as the seed instead. Specifying a value will
ensure the random number function always generates the same

deterministic sequence of numbers.

It is important to use random. seed () once at the beginning of your
program to ensure you get random numbers. You should not need to
use this command more than once in your program.

Associated keywords: import, random.choice,
random.randint, random.shuffle

Levels 1-10 42

TIME 2 CODE Python Programming guide

RANDOM.SHUFFLE

random.shuffle(list)

Examples:

random.shuffle(mylist)

Method: Reorders the items in a list into a random order.

This command must be imported from the random library before use.

Associated keywords: import, random.choice, reverse,
sort

Levels 1-10 43

TIME 2 CODE Python Programming guide

RANGE

range(parameter, parameter, parameter)

Examples:

for counter in range(5):

for counter in range(5, 0, -1)
Command: Enumerates a set of numbers.

Used with the for command, range creates a set of numbers for the
iteration. For example, range(5) will produce the numbers 0, 1, 2, 3,
4. That's five numbers starting at zero.

The set of numbers can be defined with additional parameters. For
example, range(5, @, -1) will create a set of five numbers
starting at five in increments of -1. The setis 5, 4, 3, 2, 1.

The start, end and increment can be any values. An invalid set of
parameters that could never be completed, e.g. (5, 0, 1) will return an

empty set.

Associated keywords: for

Levels 1-10 A4

TIME 2 CODE Python Programming guide

READ

variable = pipe.read()

Examples:

my file = open("data.txt", "r")
data = my_file.read()
Method: Reads all the data from an open file.

The variable becomes all the data in the file. To read just one line at a
time, use readline instead.

The data will include a hidden end of line escape character. You
should always remove this with the strip command once the data
has been read.

Associated keywords: close, open, readline, split,
strip, write

Levels 1-10 45

TIME 2 CODE Python Programming guide

READLINE

variable = pipe.readline()

Examples:

my file = open("data.txt", "r")
data = my_file.readline()
Method: Reads one line of data from an open file.

The variable becomes all the data in the file until the end of line
escape code is reached. To read the whole file at once, use read
instead.

The data will include a hidden end of line escape character. You
should always remove this with the strip command once the data
has been read.

This method is usually used with a while loop if you want to stop
reading once an item has been found, or with a for loop to read all the
data from afile.

For example:

my file = open("data.txt", "r")

for line in my_ file:

print(line.strip())

Associated keywords: close, open, read, split, strip,
write

Levels 1-10 46

TIME 2 CODE Python Programming guide

REMOVE

list.remove(parameter)

Examples:
mylist.remove("Dave")
Method: Removes the first occurrence of the parameter from a list.

The example above removes the string "Dave" in the list called mylist.
Remember that this will reduce the index of all other elements stored

after this index by -1.

An error will occur if the parameter is not in the list, so this should be
checked with the commands if and in before using this command.

To remove all instances of the parameter without an error you would

need to use a while loop. E.g.
while "Dave" in mylist:
mylist.remove("Dave")

Associated keywords: append, insert, pop

Levels 1-10 47

TIME 2 CODE Python Programming guide

REPLACE

variable = string.replace(string, string)

Examples:
sentence = "The quick brown fox"
new_sentence = sentence.replace("fox", "dog")

Method: Replaces all occurrences of one string with another.

In the example above, new_sentence would be assigned, "The quick

brown dog”.

Associated keywords: find

Levels 1-10

48

TIME 2 CODE Python Programming guide

RETURN

return expression

Examples:
def square(x):

return x * x

y = square(5)
Command: Returns a value from a subprogram.
Subprograms that return values are called functions.

In the example above, the number 5 is passed into the function called
square and assigned to the parameter x. The variable is then
multiplied by itself and returned as the output from the function
square into the variable y which assigns it the value 25.

The return expression can be a Boolean, e.g. return True, a variable,
e.g. return total, a list or the result of a calculation.

It is possible to return more than one value in Python, each separated
with a comma, but many languages do not support this so it is
generally avoided in favour of returning a list.

Subprograms that do not return a value are called procedures.

Associated keywords: def

Levels 1-10 49

TIME 2 CODE Python Programming guide

REVERSE

list.reverse()

Examples:
mylist.reverse()
Method: Reverses the items in a list.

This is useful if you want the items in a list in descending order. Use
.sort() toinitially sort the items and then reverse the order with
.reverse().

Associated keywords: sort, random.shuffle

Levels 1-10 50

TIME 2 CODE Python Programming guide

ROUND

variable = round(parameter, parameter)

Examples:

X = round(6.532234, 2)

x = round(y, 3)

Function: Rounds a number to a given number of decimal places using
the 0.5 rule. E.g. 6.2 would not be rounded up, whereas 6.6 would be.

Associated keywords: math.ceil, math.floor

Levels 1-10 51

TIME 2 CODE Python Programming guide

SETUP

Variable.setup(parameter, parameter)
Examples:
window.setup (800, 600)

Method: Sets the size of the turtle window variable in pixels. The first
parameter is the width, the second parameter is the height.

Requires use of turtle.Screen() to initialise the window variable
first.

Associated keywords: turtle.Screen, turtle.Screen,
turtle.screensize

Levels 1-10 52

TIME 2 CODE Python Programming guide

SORT

list.sort()

Examples:

mylist.sort()

Method: Sorts the items in a list into ascending order.
Python uses a Tim Sort to order the items in a list.

Associated keywords: reverse, random.shuffle

Levels 1-10

53

TIME 2 CODE Python Programming guide

SPLIT

list = string.split(string)
Examples:

mystring = "Hello,World"
mylist = mystring.split(",")
Method: Splits a string into a list.

In the example above, mylist would be assigned, ["Hello", "World"]

A new element is created each time the separator characters are
found in the string. In the example above, a comma is used to identify
where items should be split.

Split can be useful for inputting a single record from a CSV file.

Associated keywords: join

Levels 1-10 54

TIME 2 CODE Python Programming guide

STR

variable = str(parameter)

Examples:
x = str(6.5)
x = str(price)

Function: Casts a parameter to a string (sequence of alphanumeric
characters).

Different types of data are stored in different ways by the computer.
Although calculations must be performed on integers and real
numbers, inputs and outputs are always strings.

Don’t confuse the integer 6 with the string "6". They have different
binary codes inside the computer even though they look the same to
the user.

It can be necessary to convert or cast a number into a string before it
can be concatenated, used with string manipulation or format

commands.

Associated keywords: int, float

Levels 1-10 55

TIME 2 CODE Python Programming guide

STRIP

variable = string.strip(parameter)

Examples:

mystring "Hello World "

mystring = mystring.strip()

Method: Removes whitespace and hidden escape characters from the
beginning or end of a string.

In the example above, the spaces would be removed from the end of
the string, but not between the words inside the string.

An optional string parameter can be specified if there are particular
characters to remove. For example, if the parameter was "Z" then any
leading and training "Z" characters would be removed.

This command is essential to use after reading data from a file to
ensure the hidden end of line/record characters are removed before
further processing. It can also be helpful as an initial step for pre-
processing inputs before validation.

Associated keywords: read

Levels 1-10 56

TIME 2 CODE Python Programming guide

TIME.SLEEP

time.sleep(value)

Examples:
time.sleep(5)

Method: Delays the next line of code executing for a given number of
seconds determined by the value.

This command must be imported from the time library before use.

Associated keywords: import

Levels 1-10 57

TIME 2 CODE Python Programming guide

TRY

fry:
indented code
except:
indented code
else:
indented code
finally:
indented code
Examples:
try:
my file = open("data.txt", "r")
except FileNotFoundError:
my file = open("data.txt", "w")
my file.write(boilerplate)
file.close()
my file = open("data.txt", "r")
print("New file created. ")

else:

print("File opened successfully.")

Levels 1-10

TIME 2 CODE Python Programming guide

finally:
print("Ready to read data from the file.")

Command: Handles run-time exception errors to prevent a program
from crashing unexpectedly.

There are some commands that can fail when a program is running
due to exceptional circumstances. For example, if a program reads a
data file but the user has deleted it or when attempting to write to a
file the secondary storage is full. In these cases, the program will
crash.

It is considered good practice to trap potential run-time errors with
what is known as exception handling techniques.

In the example above a file called data.txt is opened for reading, but if
the file does not exist a new file is created, and boilerplate data
written to it before it is opened. This ensures the program always has
data to read from the file.

The try command is used to denote the start of an exception handling
event.

If an exception occurs, the indented code in the except section will be
executed. There is no need to specify the type of error that can occur,
but it is considered good practice to do so. For example, except
FileNotFoundError will execute the indented section if the file cannot
be found. More than one except section can be used for multiple

events.
The else section executes if no error occurred.

The finally section executes regardless of whether an error occurred
or not.

Levels 1-10 59

TIME 2 CODE Python Programming guide

The try command should also be used for possible situations where a
division by zero could occur as this will also crash the program.

Associated commands: open, read, readline, write

Levels 1-10 60

TIME 2 CODE Python Programming guide

TURTLE.BACK

turtle.back(value)

Examples:
turtle.back(100)
Method: Moves the turtle backwards a given number of pixels.

Associated keywords: turtle.forward

Levels 1-10

61

TIME 2 CODE Python Programming guide

TURTLE.BEGIN_FILL

turtle.begin_fill()

Examples:
turtle.begin_ fill()
Method: Initiates the start of a shape fill.

Associated keywords: turtle.end_fill, turtle.fillcolor

Levels 1-10 62

TIME 2 CODE Python Programming guide

TURTLE.CIRCLE

turtle.circle(value, value)

Examples:
turtle.circle(100)
turtle.circle(100, 1890)

Method: Draws a circle of a radius of the first value to the extent of
the second value.

For example, turtle.circle(100) will draw a full circle with a
radius of 100 pixels. turtle.circle(50, 180) willdrawa
semicircle with a radius of 50 pixels.

Associated keywords: turtle.begin_fill, turtle.endfill,
turtle.fillcolor, turtle.pencolor, turtle.pensize

Levels 1-10 63

TIME 2 CODE Python Programming guide

TURTLE.DONE

turtle.done()

Examples:
turtle.done()

Method: Use as the last line of the program to keep the turtle window
open until it is closed by the user.

Associated keywords: All turtle library commands.

Levels 1-10 64

TIME 2 CODE Python Programming guide

TURTLE.END_FILL

turtle.end_fill()

Examples:
turtle.end_fill()

Method: Completes the shape filling process. Once the lines create an
enclosed shape it will be filled when this command is executed. The
shape fill must be initiated before the first line of the shape is drawn
with turtle.begin fill().

Associated keywords: turtle.begin_fill, turtle.fillcolor

Levels 1-10 65

TIME 2 CODE Python Programming guide

TURTLE.FILLCOLOR

turtle fillcolor(string)

Examples:

turtle.fillcolor("blue")

Method: Sets the colour to be used to fill a shape.
See appendix for colours.

Associated keywords: turtle.pencolor

Levels 1-10

66

TIME 2 CODE Python Programming guide

TURTLE.FORWARD

turtle forward(value)

Examples:
turtle.forward(100)
Method: Moves the turtle forwards a given number of pixels.

Associated keywords: turtle.back.

Levels 1-10

67

TIME 2 CODE Python Programming guide

TURTLE.HIDETURTLE

turtle.hideturtle()

Examples:
turtle.hideturtle()

Method: Makes the turtle invisible although it will still draw if the pen
is down.

Associated keywords: turtle.showturtle

Levels 1-10 68

TIME 2 CODE Python Programming guide

TURTLE.HOME

turtle.home()

Examples:
turtle.home()

Method: Moves the turtle to the position 0, O.

Associated keywords: turtle.reset, turtle.setposition

Levels 1-10

69

TIME 2 CODE Python Programming guide

TURTLE.LEFT

turtle.left(value)

Examples:

turtle.left(90)

Method: Turns the turtle anticlockwise a given number of degrees.

Associated keywords: turtle.right, turtle.setheading

Levels 1-10

70

TIME 2 CODE Python Programming guide

TURTLE.MODE

turtle.mode(string)

Examples:
turtle.mode("standard")
turtle.mode("logo")

A turtle in standard mode, initially points to the right (east) and angles
are counterclockwise.

A turtle in logo mode, initially points up (north) and angles are

clockwise.

Note this method is not supported in all turtle library implementations

and will cause an error if not.

Associated keywords: turtle.setheading

Levels 1-10 71

TIME 2 CODE Python Programming guide

TURTLE.PENCOLOR

turtle fillcolor(string)

Examples:

turtle.pencolor("blue")

Method: Sets the colour to be used for drawing lines.
See appendix for colours.

Associated keywords: turtle.fillcolor

Levels 1-10

72

TIME 2 CODE Python Programming guide

TURTLE.PENDOWN

turtle.pendown()

Examples:
turtle.pendown()

Method: Puts the pen on the drawing canvas so as the turtle moves
lines will be drawn (default).

Associated keywords: turtle.pensize, turtle.penup

Levels 1-10 73

TIME 2 CODE Python Programming guide

TURTLE.PENSIZE

turtle.pensize(value)

Examples:
turtle.pensize(5)

Method: Sets the width of the line that is drawn in pixels. Value must
be positive. The default value is 1.

Associated keywords: turtle.pendown, turtle.penup

Levels 1-10 74

TIME 2 CODE Python Programming guide

TURTLE.PENUP

turtle.penup()

Examples:
turtle.penup()

Method: Lifts the pen off the drawing canvas so as the turtle moves
lines will not be drawn.

Associated keywords: turtle.penup

Levels 1-10 75

TIME 2 CODE Python Programming guide

TURTLE.RESET

turtle.reset()

Examples:
turtle.reset()

Method: Clears the drawing canvas, sets the position of the turtle to
0, 0 and resets the turtle properties to their default values.

Associated keywords: turtle.home, turtle.setposition

Levels 1-10 76

TIME 2 CODE Python Programming guide

TURTLE.RIGHT

turtle.right(value)

Examples:
turtle.right(90)
Method: Turns the turtle clockwise a given number of degrees.

Associated keywords: turtle.left, turtle.setheading

Levels 1-10

77

TIME 2 CODE Python Programming guide

TURTLE.SCREEN

Variable = turtle.screen()

Examples:
window = turtle.screen()
Method: Returns a variable to address the turtle window.

Associated keywords: setup, turtle.screensize

Levels 1-10

78

TIME 2 CODE Python Programming guide

TURTLE.SCREENSIZE

turtle.screensize(parameter, parameter)

Examples:
turtle.screensize (800, 600)

Method: Sets the size of the scrollable drawing canvas in pixels.
Scrollbars are only active if turtle drawing terminates with the method
turtle.done().

Associated keywords: setup, turtle.screen

Levels 1-10 79

TIME 2 CODE Python Programming guide

TURTLE.SETHEADING

turtle.setheading(value)

Examples:
turtle.setheading(99)

Method: Sets the turtle orientation in degrees regardless of the
direction the turtle is currently facing.

If the turtle mode is standard, a heading of zero faces right and
positive values are anticlockwise.

If the turtle mode is logo, a heading of zero faces up and positive

values are clockwise.

Associated keywords: turtle.left, turtle.mode,
turtle.right.

Levels 1-10

80

TIME 2 CODE Python Programming guide

TURTLE.SETPOSITION

turtle.setposition(value, value)

Examples:
turtle.setposition(100, 100)
turtle.setposition(-50, -50)

Method: Sets the position of the turtle on the drawing canvas in
pixels. The first value is the horizontal position, the second value is the

vertical position.

Associated keywords: turtle.home

Levels 1-10 81

TIME 2 CODE Python Programming guide

TURTLE.SHOWTURTLE

turtle.showturtle()

Examples:
turtle.showturtle()
Method: Makes the turtle visible.

Associated keywords: turtle.hideturtle.

Levels 1-10

82

TIME 2 CODE Python Programming guide

TURTLE.SPEED

turtle.speed(parameter)

Examples:

turtle.speed(5)

turtle.speed("fast")

Method: Sets the speed of the turtle when moving.

Parameters can be:

Values 0-10. Zero is the fastest, ten is the slowest.
"fastest"

"fast"

"normal"

"slow"

"slowest"

Associated keywords: All turtle library commands.

Levels 1-10 83

TIME 2 CODE Python Programming guide

TURTLE.TURTLE

Variable = turtle.Turtle()

Examples:
x = turtle.Turtle()
Method: Creates a new turtle with the variable name x.

Associated keywords: All turtle library commands.

Levels 1-10

84

TIME 2 CODE Python Programming guide

UPPER

Variable = string.upper()

Examples:
surname = sinput.upper()
Method: returns the string in uppercase (capital letters).

Associated keywords: islower, isupper, lower

Levels 1-10

85

TIME 2 CODE Python Programming guide

WHILE

while condition:
indented code

Examples:
valid_input = False
while not valid_input:

print("Enter your choice: ")

while choice < © or choice > 3:
print("Enter your choice: ")

Command: Repeats the indented section of code until the condition is
not met.

Code to be executed must be indented. This is often the source of
many logic errors, so check your code is indented correctly.

Repeated sections of code are known as iterations or loops. Use a
while command when it is not known in advance how many iterations

will be required.

It is common to ensure the condition cannot be met before the first
iteration to ensure the indented code executes at least once.

It is good practice to comment before this command to explain the
purpose of the iteration or condition.

Levels 1-10 86

TIME 2 CODE Python Programming guide

More than one condition can be combined with logic operators and
brackets can be used to group conditions.

It is possible to include another if commands within an indented

section. This is known as nesting.

While loops are often used with indented input commands for
validation, ensuring that the user has entered a valid input before

continuing the program.

A special value that uses its presence as a condition to terminate a

loop is called a sentinel value.

Infinite loops can be created with while True: since true will

always be true.

Associated keywords: #, for, in

Levels 1-10 87

TIME 2 CODE Python Programming guide

WRITE

pipe.write(variable)

Examples:

my file = open("data.txt", "w")
my_ file.write("Hello World")
Method: Writes data to an open file.

If the file was opened with the "w" operation any existing data in the
file will be overwritten. If the file was opened with the "a" operation,
data will be appended to the end of the file without overwriting

existing data.

Note if you want the next item of data written to the file to be on a
new line, you must include the end of line escape code "\n".

It is considered good practice to prepare the data to be written in a
single variable and then write that data in one command.

For example:

data = item1 + "," + item2 + "\n"

my file.write(data)

This will write variables item1 and item2 separated by a comma to the
file.

Associated keywords: close, open, read, readline, strip

Levels 1-10 88

TIME 2 CODE Python Programming guide

Appendix 1

Concatenation

X = "Hello" + " " + "World"

To concatenate means to join together. A comma can be used to
concatenate strings inside a print statement. A plus symbol needs to
be used outside of a print statement.

Numbers should be cast to strings before they are concatenated.

Comparison operators

== |if X ==y Is x the same as y? (equal)

I= [if x =y Are x and y different? (not equal)
< if x <y Is x less than y?

<= |if x <=y Is x less than or equal to y?

> if x >y Is x greater than y?

>= | if X >=y Is x greater than or equal to y?

Note that a double equal is asking a question, a single equal assigns a
variable. E.g.

X == 6 meansisxequal to 67

X = 6 means x becomes the number 6.

Levels 1-10 89

TIME 2 CODE Python Programming guide

Logical operators

and | if x > y and x > 6: Both conditions must be
true for the result to be
True.
or |if x >y or x > 6: One of the conditions
must be true for the
result to be True.
not | if not x: The condition must not
be met for the result to
be True.
Mathematical operators
+ X =6+5 Addition
- X =6 -5 Subtraction
* X =6 %*5 Multiplication
/ x=6/5 Division
/] |x=6//5 Integer (floor) division
¥ | x =6 *¥*§ Exponentiation
% |x=5%5 Modulus
Levels 1-10 90

TIME 2 CODE Python Programming guide

String manipulation
Substrings

Many languages include commands left, mid and right to extract
characters from the left, middle or end of a string.

Extracting from the start of a string:
variable = "Hello"[0:2]

The variable would be assigned "He".
Extracting from the middle of a string:
variable = "Hello"[2:5]

The variable would be assigned "llo".
Extracting from the end of a string:
variable = "Hello"[-2:]

The variable would be assigned "lo".

Creating strings of characters

It is possible to use mathematical operators to create strings of

characters. For example:
variable = "@" * 5

The variable would be assighed "@@@@@".

Levels 1-10 91

TIME 2 CODE Python Programming guide

2D arrays and lists
Creating a data structure

An array is a data structure that does not change its size when the
program is running and contains only one data type. E.g. a table of
integers.

A list is a data structure that dynamically changes its size when the
program is running and can contain any data type.

It is common practice to declare and assign 2D arrays and lists in a
single line of code using two for loops:

array = [["-" for columns in range(4)] for rows in
range(3)]

Note the command is written on one line.

This will create a 2D array or list that can be visualised as a table:

array

Index 0 1 2

Note that arrays and lists are zero indexed.

Levels 1-10 92

TIME 2 CODE Python Programming guide

2D arrays and lists are an abstraction of memory. The table is just one

way of visualising the data structure. Whether you choose to consider

this a 3x4 or 4x3 table is up to you. The variables columns and rows

are used so that the code is easier to understand.

In the example above the elements (cells) were all assigned to be a

hyphen as specified in the command. This can be any data. An empty

mnn

string: """ or a number.

Reading CSV files
Consider this typical CSV file:

Trial A, 77, 85, 88
Trial B, 74, 92, 100
Trial C, 64, 78, 91

This can be stored in a 2D list:

data
Index 0 1 2 3
0 Trial A 77 85 88
1 Trial B 74 92 100
2 Trial C 64 78 91
Levels 1-10 93

TIME 2 CODE Python Programming guide

Reading data from the CSV file into a list can be achieved with this
code:
def read_file(filename):

database = []

file = open(filename, "r")

Read each line of data until end of file

for record in file:

record.strip()

record
fields = record.split(",")
database.append(fields)
file.close()
return database
Note this example does not include any exception handling for clarity.
data = read_file(filename)
print(data[2][3])

Would result in the number 91 being output because the data

structure has been created assuming data[row][column]

Levels 1-10 94

TIME 2 CODE Python Programming guide

Appendix 2

Turtle window

The turtle window is one size, and the turtle drawing canvas (inside

the window) can be a different size. To make the turtle window

bigger, a screen needs to be created and set up. Here is an example:

width = 800

height = 400

screen = turtle.Screen()

screen.setup(width, height)

To make the drawing canvas bigger use turtle.screensize().

In some development environments, the turtle window will close as

soon as the program completes. Add turtle.done() as the last line

in the code file to keep the window open.

Turtle colours

blue black green yellow
orange red pink purple

indigo olive lime navy

orchid salmon peru sienna

white cyan silver gold
Levels 1-10 95

TIME 2 CODE Python Programming guide

Command Index

e et 1
A e 2
APPENA o 3
(o] o PSPPSR SPR 4
ClOSE e 5
[ole] o) A TP O PP PP PP PP PP PP PPPPPUPPPPPPPPPN 6
GO e 7
B 8
Lo T L S SO PPEURUPPPRRPPP 9
O e 10
FOIMIAT L e 12
) S U U PO P PR U P PR OPPPPRPPPPPP 14
IMIPOIT Lo 16
) e 17
INAEX et 18
INPUL. e 19
INSEIT e 20
T e 21
ISAIPNA e 22
ISAINMUMN. L. 23

Levels 1-10 96

TIME 2 CODE Python Programming guide

1o 7= S U PP U U URS R PPPRRTROPR 24
ISIOWBT et 25
ISUDIDIE ettt 26
JOIN e 27
B e 28
LDV BT et 29
MATCI e 30
MATN.COIL .t 32
MAtN.FIOOT . 33
MNATNL Dt 34
MATNLSOIT e 35
(o] 01T o FOTT TR S PP PO PP PP PP PP PP PP PP PP PPPPPPPPPPPPPN 36
(0] o PP PP P PR UPSPPPRPN 37
POP ettt 38
PIINT o, 39
FANAOM.CROICE .ot 40
FaNdomM.randint...c.oe i 41
FANAOMLSEEA ..i ittt 42
random.ShUffle ..o 43
LT =< PRSP 44
T Lo PSPPSR PR 45

Levels 1-10 97

TIME 2 CODE Python Programming guide

FEAAIINE ..ttt 46
FEMOVE ..ottt 47
FEPIACE Lot 48
FERTUIM Lo 49
FEVEISE Lttt et e 50
[TU T oL IR PP PSSP P PP 51
BT s 52
SO et 53
ST ettt 54
LY PSP PPPTR 55
ST s 56
EIMB.SICED e, 57
DY e 58
EUPEIE.DACK .o 61
turtle.begin fill ..., 62
BUIEIE.CINCIB e 63
BUITIE.AONE Lo 64
turtle.end fill .o, 65
EUFEIE.FIICOTON L 66
TUPEIE.FOrWArd .o 67
turtle.Nideturtle ..o 68

Levels 1-10 98

TIME 2 CODE Python Programming guide

EUMEIENOME L. 69
BUPEl e Ot 70
BUMEIEMOAE e 71
TUIIE.PENCOION ..t 72
TUMI . PENAOWN .o, 73
TUM . PENSIZE o, 74
LU R dICI 1= o[V o F USSP RS PUPR 75
BUMEIE.TESET 1t 76
UM B TIBNT e 77
LUITIELSCIEEBN i 78
LUITIE.SCrEBNSIZE et 79
turtle.setheading ..., 80
TUMIE.SEtPOSITION Lo, 81
TUrElE. ShOWEUIEIE . 82
TUMIE.SPEEA L., 83
BUIEIEEUITIE (e 84
UPPET ittt 85
WHITE L 86
WITTR L 88

Levels 1-10 99

